I plan, as a starting point, to consider a string, pinned at both ends. This has an infinite number of potential modes and which ones are excited depends on the mode of excitation: a guitar string starts with a displacement function and zero velocity; a piano string starts with zero displacement and a velocity that I suspect can be fairly well approximated by a Dirac delta function; I don't know about a violin string.
I'll then go on to discuss wind instruments, particularly flute and saxophone (because I have them lying about the house), before dealing with the most difficult of all, the humble harmonica. That's difficult because, even using the simplest Euler-Bernoulli model, you have to deal with hyperbolic functions.
An optional extra module will serve as a prequel to all of this - explaining Fourier analysis and synthesis.
I've been wondering how best to do the graphics. The two obvious candidates are VPython and Easy Java Simulations (EJS) - there's a good comparison at the brilliant Dot Physics. I've been using Python a lot lately, especially with NumPy, SciPy and matplotlib, and with all those great libraries it gives you essentially a free MATLAB. On the other hand, the fact that Java can run on pretty much any machine (except the IPhone), means EJS wins hands-down for an online demo.